

Upfitter Interface Module® +

J-AIM605-C

2024-2025 Chevrolet Silverado/GMC Sierra 1500-3500

Introduction

The AIM605 provides three major functions to facilitate the production of emergency vehicles. First, it provides a fast idle feature that triggers from a number of configurable sources including battery voltage, Parking Brake and a discrete input. Second, it provides 8 outputs which can be configured to turn on in response to a variety of vehicle data. These outputs are used to drive various external loads. Lastly, it controls the door locks over the vehicle's LIN network.

CAUTION

All electronic products are susceptible to damage from Electrostatic Discharge or ESD. Ground yourself before handling or working with the module and harnessing by first touching chassis ground, such as the barrel of the cigarette lighter.

It is the installer's responsibility to route and secure all wiring harnesses where they cannot be damaged by sharp objects, mechanical moving parts and high heat sources. Failure to do so could result in damage to the system or vehicle and create possible safety concerns for the operator and passengers.

It is important to avoid placing the module where it could encounter strong magnetic fields from high current cabling connected to motors, solenoids, etc. Also avoid radio frequency energy from antenna's or inverters next to the module. Finally, avoid high voltage spikes in vehicle wiring by always using diode clamped relays when installing upfitter circuits.

Installation Instructions

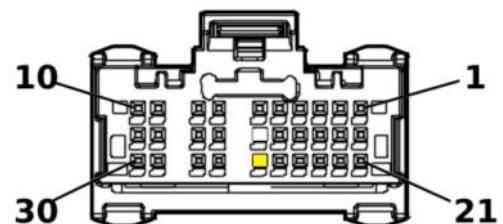
Disconnect vehicle battery before proceeding with installation

WARNING
Disconnect the battery to prevent setting a check engine light.

AIM605 Module

Remove the lower dash panel below the steering column and find a suitable location to mount the AIM605 module. Do not mount the module where it will be exposed to excessive heat. Do not mount the module until all wire harnesses are routed and secure. The last step of the installation is to mount the module.

Installation Instructions (Continued)


Data Link Harness (6-pin connector)

1. Locate the vehicle's Gateway Module. It will be mounted under the dash and above the acceleration Panel.
2. Locate the 30-Pin connector, X1 labeled "BLK" on the Module.

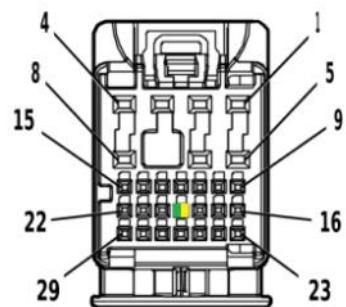
3. Remove the OEM connector from the Gateway module and insert the mating connector from the 840-00330 harness.
4. Insert the OEM connector into the mating connector on the 840-00330 harness.
5. Locate the 30-Pin connector, X2 labeled "LTGY" on the module.

6. Connect the yellow and white blunt cut wires of the 840-00330 harness to pin 16 and 26 of the OEM connector using the included Posi-Taps. Note that the wire colors should match that of the OEM harness.

7. Secure the AIM605 Data Link harness so that it does not hang below the lower dash panel.
8. Plug the free end of the Data Link harness into the mating 6-pin connector on the module.

Door Lock Lin Connection (840-00331 Connections)

1. Locate the Vehicle's Body Control Module. It will be mounted under the dash to the upper left of the footwell.
2. Locate the Body Control Module X5 connector. This will be the green connector connected to the module. Disconnect the connector from the BCM for easier access.


Installation Instructions (Continued)

Door Lock Lin Connection (Continued)

- Find the Green/Yellow wire in pin 19 and cut this wire a few inches from the connector.

Note: Pin 17 is also a Green/Yellow wire. Do not cut it by mistake.

- Connect the solid Green blunt cut wire from the AIM605 harness to the Green/Yellow wire towards the OEM connector.
- Connect the solid Yellow blunt cut wire to the Green/Yellow wire that has been disconnected from the OEM connector.
- Plug the 2 pin connectors to their mating connectors on the 840-00331 harness. The wire colors will correspond to their appropriate connections.
- Reconnect the Body Control Module X5 connector to the BCM if disconnected in step 2.
- Connect the 4w and 12w connectors of the 840-00331 harness to their mating connectors on the AIM605 module.

Installation Instructions (Continued)

Fast Idle

The fast idle system controls engine idle RPM in response to a number of triggers in order to increase electrical and mechanical output of the vehicle. By default, gas engines idle at 1500 RPM while diesel engines idle at 1200 RPM.

Fast Idle Engage Input (4-Pin Connector)

Attach the AIM605 Harness connector Pin #1 Green/White wire on the 4 pin connector to any equipment that provides a ground signal when the fast idle needs to be engaged. (PTO, pump, etc....)

Fast Idle Triggers		
Trigger Name	Trigger Conditions	Disable Conditions
Manual Engage Input	Fast Idle Engage Input wire activated	Fast Idle Engage Input wires not active
VBAT Low (if enabled)	VBAT < 12.5V (default)	VBAT > 13.5V for > 5 minutes (default)
Parking Brake (if enabled)	Parking Brake applied	Parking Brake Released

Fast Idle Preconditions

The following preconditions must be met prior to initiating Fast Idle operation:

- Vehicle speed zero
- Transmission in Park
- Accelerator pedal must not be applied
- Engine Coolant temperature less than 230°F
- Engine RPM must be greater than 200 and less than 2800
- Service Brake not applied
- Parking Brake must be applied if this feature is enabled
- CAN FD messages are not being sent over OBDII

Reconnect the vehicle battery

Pin Mode— AIM Application

The outputs can be configured from the factor for various modes, as described below. Momentary mode is the most commonly used, where an output is 'active' only when the proper conditions have been met.

Momentary: Output follows condition set but with a turn on delay, and a turn off delay. Setting 'On Delay' and 'Off Delay' to zero causes the output pin to simply "follow" the condition set being true (ON) and false (OFF).

A screenshot of a software interface showing the 'Pin Mode' configuration. The 'Pin Mode' dropdown is set to 'Momentary'. Below it are two input fields: 'Off Delay (s)' with a value of 0, and 'On Delay (s)' with a value of 0. Both fields have dropdown arrows to their right.

Latching: This mode will latch an output pin ON, starting 'On Delay' seconds after the conditions are met, and will keep it ON even after the conditions are no longer true. It will then latch the output OFF, following 'Off Delay' seconds after the conditions are met again. Think of it as toggle on-toggle off. The simplest use would be when using a momentary button as the only input condition and setting the Delays to zero. Thus a load could be turned on by pushing a momentary button, and turned back off by pushing the button a second time.

A screenshot of a software interface showing the 'Pin Mode' configuration. The 'Pin Mode' dropdown is set to 'Latching'. Below it are two input fields: 'Off Delay (s)' with a value of 0, and 'On Delay (s)' with a value of 0. Both fields have dropdown arrows to their right.

Time Hold: The output pin goes ON after the conditions become true, and stays ON for the selected 'On Time', regardless of the conditions. Off Time is Not Applicable.

A screenshot of a software interface showing the 'Pin Mode' configuration. The 'Pin Mode' dropdown is set to 'Time Hold'. Below it are two input fields: 'Off Time (s)' with a value of 0, and 'On Time (s)' with a value of 0. Both fields have dropdown arrows to their right.

Time Delay: Output is turned ON after the selected 'delay' time after the conditions are met. It stays on for selected 'On time', regardless of input conditions.

A screenshot of a software interface showing the 'Pin Mode' configuration. The 'Pin Mode' dropdown is set to 'Time Delay'. Below it are two input fields: 'Delay (s)' with a value of 0, and 'On Time (s)' with a value of 0. Both fields have dropdown arrows to their right.

Flashing—Momentary: Used for creating a flashing output. When conditions are met, output flashes. When conditions are no longer met, flashing stops. Flashing ON and OFF times (duty cycle) are controlled by entering the following values.

A screenshot of a software interface showing the 'Pin Mode' configuration. The 'Pin Mode' dropdown is set to 'Flashing - Momentary'. Below it are two input fields: 'Off Time (.1s)' with a value of 0, and 'On Time (.1s)' with a value of 0. Both fields have dropdown arrows to their right.

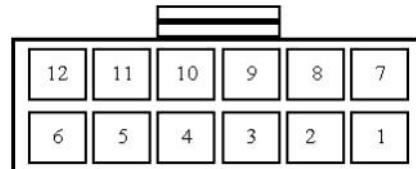
Flashing - Latching: Same as above, except flashing will continue after conditions are no longer true, and will stop when conditions become true again—toggle ON, toggle OFF. Duty cycle is controlled by the ON and OFF times.

A screenshot of a software interface showing the 'Pin Mode' configuration. The 'Pin Mode' dropdown is set to 'Flashing - Latching'. Below it are two input fields: 'Off Time (.1s)' with a value of 0, and 'On Time (.1s)' with a value of 0. Both fields have dropdown arrows to their right.

Key-Off Operation: If Key-Off operation is selected, outputs will continue to update once the key goes off. These outputs will continue to update until the vehicle goes to sleep.

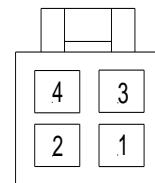
Battery Operation: Battery outputs operate similarly to key-off outputs except that, when the vehicle goes to sleep, the module will stay awake. The module will sleep when all outputs are off or if the vehicle battery drops below 11.5 volts. If the vehicle CAN wakes or an input changes, the module will wake up and resume outputting.

Note: Input 3 is an exception, and will not wake the module on a state change.


Operation Mode: Ignition Key-Off Battery

AIM605 Output pin-out definition

Outputs 2-8 are configurable as either active high (12V) or active low (ground). Each of these outputs are rated at 1/2A and are intended to drive relay coils or other low current loads. Output 1 is a high current (8A max) output and should be fused. The output sense for Output 1 (Pin #2 Purple wire on the 4 pin connector) depends on the input at Pin #4 (Tan wire) on the 4 pin connector (i.e., 12V on Pin #4 will output 12V on Pin #2 when Output 1 is active).


The 8 outputs are defined as follows:

- Pin #1 (White Wire) Door Lock Output
- Pin #2 (Green Wire) Output 2
- Pin #3 (White Wire) Output 3
- Pin #4 (Gray Wire) Output 4
- Pin #5 (Blue/White Wire) Door Unlock Input
- Pin #6 N/C
- Pin #7 (Red Wire) Jumper to Pin 12
- Pin #8 (Brown Wire) Output 5
- Pin #9 (Orange Wire) Output 6
- Pin #10 (Blue Wire) Output 7
- Pin #11 (Yellow Wire) Output 8
- Pin #12 (Red Wire) Jumper to Pin 7

Back of Connector

- Pin #1 (Green/White Wire) General Purpose Input 1, Active Low
- Pin #2 (Purple Wire) Output 1
- Pin #3 (Pink Wire) General Purpose Input 2, Active Low
- Pin #4 (Tan Wire) Output 1 Source

Back of Connector

Connect the desired outputs to vehicle equipment as needed. Tape up unused leads. When connecting to relays, use relays with appropriate kick-back suppression, such as Digikey #PB682-ND. Unsuppressed relays will induce very high voltage spikes throughout modern vehicle's sensitive computer electronics and should not be used, per Ford, GM, SAE, etc.

By default, all outputs are active low and configured as follows:

- Output #1 (Purple wire) Engine Cranking
- Output #2 (Green wire) TR = Park
- Output #3 (White wire) Parking Brake Applied
- Output #4 (Gray wire) TR = Reverse
- Output #5 (Brown wire) Ignition On
- Output #6 (Orange wire) Engine Running
- Output #7 (Blue wire) Right Turn Signal On
- Output #8 (Yellow wire) Left Turn Signal On

Door Unlock

The AIM605 can unlock the OEM doors via the LIN interface if triggered while the vehicle is in Park with the ignition On. Momentarily (greater than half a second) applying battery power to pin 5 Blue/White wire on the 12 pin connector causes the unlock command to be sent. This will unlock all OEM doors.

Reconnect the vehicle battery

During VIN acquisition: Scrolling LED's between LED1 and LED5 indicate an error occurred while acquiring the VIN.

- Verify that the chassis is supported by this product. If work was recently performed on this chassis, the VIN may have been cleared in the PCM.
- A lit LED between LED 1 and LED 5 will indicate the following:

LED 1	Manufacturer Error
LED2	Model Error
LED3	Engine Error
LED4	Model Year Error
LED5	VIN Error

Post Installation System Operation Test

Perform the following tests before actually mounting the module, to allow easy viewing of the diagnostic LED's, if needed.

1. Place transmission in Park and start the engine. **Note:** Vehicle may enter Fast Idle if VBAT is low. Either wait to see if the battery charges and Fast Idle stops, or place a charger on the vehicle to disable the VBAT low trigger to allow testing of other triggers.
2. Manually engage the Fast Idle Input by having aftermarket vehicle equipment ground the Input wire. Engine speed will increase to the set RPM level. If this does not occur, check harness connections. Also see diagnostics below.
3. When Fast Idle is engaged, keep the Input wire grounded, and depress the Service Brake for 1 second. Fast idle will temporarily disengage anytime the Service Brake is pressed, and will automatically reengage after approximately 2 seconds once the Brake pedal is released.
4. Place transmission shift lever in the "Neutral" position. (Input wire still grounded). Verify the vehicle does not go into Fast Idle.
5. Lock all of the vehicles doors and momentarily (greater than half a second) apply battery power to pin 5 Blue/White wire on the 12 pin connector. Verify that all of the doors unlock.

If the AIM605 fails any of the above tests, check harnesses and review instructions, or check diagnostics below. If necessary, call InterMotive Technical Support at (530) 823-1048.

Post Installation System Operation Test (Continued)

Diagnostics

Diagnostic mode is entered by momentarily pressing the Red "Test" button on the module. The module provides diagnostic LEDs which illuminate according to the following table. To exit this mode simply cycle the key or momentarily press the "Test" button again.

LED #	Diagnostic Mode LED Descriptions
1	Output 1 is On
2	Output 2 is On
3	Output 3 is On
4	Output 4 is On
5	Output 5 is On
6	Output 6 is On
7	Output 7 is On
8	Output 8 is On
9	Fast Idle Input Active
10	Door Unlock Input Active
STATUS	Continuously flashes two digit status codes. See Status Code table

Fast Idle Status Codes

Status Codes provide the current status of the Fast Idle system. The on-board "Status" LED will flash a 2-digit code as shown in the table. The first digit will flash, wait one second, flash the second digit, then wait four seconds before the next code. The Status Codes continue to flash until the module is reset (cycle key), or the test input is momentarily grounded again.

AFIS Status Codes	
Status Code	Description
1-1	Ready for fast idle
2-3	Triggered: Parking Brake
2-4	Triggered: VBAT Low
2-8	Triggered: Engage Input
3-1	RPM > 2800
3-2	RPM < 200
3-3	TR not = to PARK
3-4	VSS not = to 0 MPH
3-5	Service Brake applied
3-6	TFT > 250
3-7	Need to cycle TR
3-8	ECT > 230°F
3-9	Need to Apply PB
3-10	No Security Access
3-11	CAN FD Timeout Active

Upfitter Interface Module® +
J-AIM605-C
LEAVE IN VEHICLE
Operating Instructions
2024-2025 Chevrolet Silverado/GMC Sierra 1500-3500

System Operation

The AIM605 provides three major functions to facilitate the production of emergency vehicles. First, it provides a fast idle feature that triggers from a number of configurable sources including battery voltage, parking brake and a discrete input. Second, it provides 8 outputs which can be configured to turn on in response to a variety of vehicle data. These outputs are used to drive various external loads. Lastly, it controls the door locks via the vehicle's LIN network.

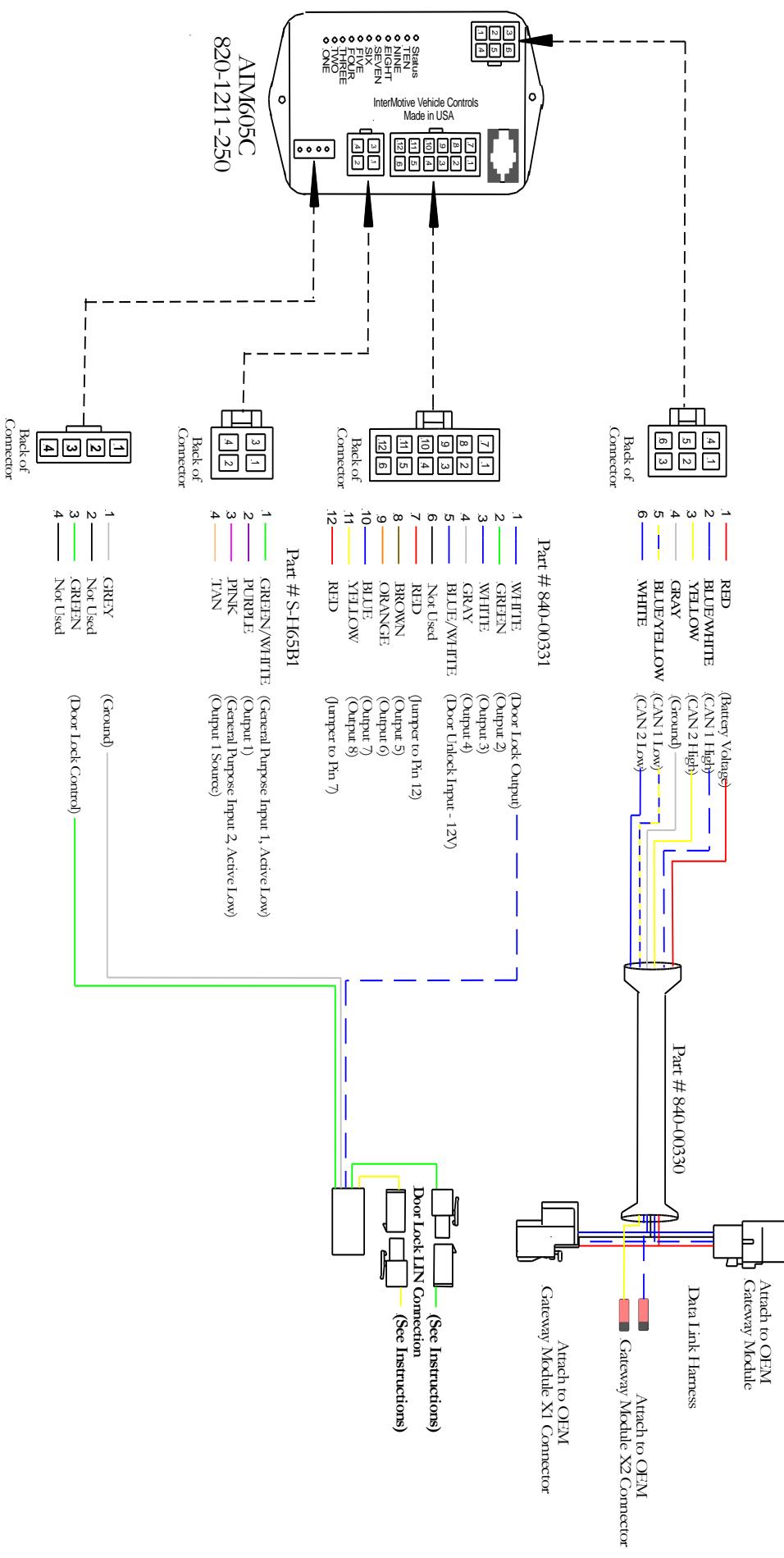
Fast Idle

The fast idle system controls engine idle RPM in response to a number of triggers in order to increase electrical and mechanical output of the vehicle. By default, gas engines idle at 1500 RPM while diesel engines idle at 1200 RPM.

Fast Idle Triggers		
Trigger Name	Trigger Conditions	Disable Conditions
Manual Engage Input #1	Fast Idle Engage Input wire activated	Fast Idle Engage Input wires not active
VBAT Low (if enabled)	VBAT < 12.5V (default)	VBAT > 13.5V for > 5 minutes (default)
Parking Brake (if enabled)	Parking Brake applied	Parking Brake Released

Fast Idle Preconditions

The following preconditions must be met prior to initiating Fast Idle operation:


- Vehicle speed zero
- Transmission in Park
- Accelerator pedal must not be applied
- Engine Coolant temperature less than 230°F
- Engine RPM must be greater than 200 and less than 2800
- Service Brake not applied
- Parking Brake must be applied if this feature is enabled
- CAN FD messages are not being sent over OBDII

Door Unlock

The AIM605 can unlock the OEM doors via the LIN interface if triggered while the vehicle is in Park with the ignition On. Momentarily (greater than half a second) applying battery power to pin 5 Blue/White wire on the 12 pin connector causes the unlock command to be sent. This will unlock all OEM doors.

U.S. Patent #9,469,261

J-AIM605-C

Submit product registration at www.InterMotive.net

If the AIM605 fails any step in the Post Installation Test, review the installation instructions and the loaded configuration by running the Graphical User Interface application. If necessary, call InterMotive technical support at (530) 823-1048.